3.3.57 \(\int \frac {\sqrt {a+a \sec (c+d x)} (A+C \sec ^2(c+d x))}{\sec ^{\frac {9}{2}}(c+d x)} \, dx\) [257]

3.3.57.1 Optimal result
3.3.57.2 Mathematica [A] (verified)
3.3.57.3 Rubi [A] (verified)
3.3.57.4 Maple [A] (verified)
3.3.57.5 Fricas [A] (verification not implemented)
3.3.57.6 Sympy [F(-1)]
3.3.57.7 Maxima [B] (verification not implemented)
3.3.57.8 Giac [F]
3.3.57.9 Mupad [B] (verification not implemented)

3.3.57.1 Optimal result

Integrand size = 37, antiderivative size = 213 \[ \int \frac {\sqrt {a+a \sec (c+d x)} \left (A+C \sec ^2(c+d x)\right )}{\sec ^{\frac {9}{2}}(c+d x)} \, dx=\frac {2 a A \sin (c+d x)}{63 d \sec ^{\frac {5}{2}}(c+d x) \sqrt {a+a \sec (c+d x)}}+\frac {2 a (16 A+21 C) \sin (c+d x)}{105 d \sec ^{\frac {3}{2}}(c+d x) \sqrt {a+a \sec (c+d x)}}+\frac {8 a (16 A+21 C) \sin (c+d x)}{315 d \sqrt {\sec (c+d x)} \sqrt {a+a \sec (c+d x)}}+\frac {16 a (16 A+21 C) \sqrt {\sec (c+d x)} \sin (c+d x)}{315 d \sqrt {a+a \sec (c+d x)}}+\frac {2 A \sqrt {a+a \sec (c+d x)} \sin (c+d x)}{9 d \sec ^{\frac {7}{2}}(c+d x)} \]

output
2/63*a*A*sin(d*x+c)/d/sec(d*x+c)^(5/2)/(a+a*sec(d*x+c))^(1/2)+2/105*a*(16* 
A+21*C)*sin(d*x+c)/d/sec(d*x+c)^(3/2)/(a+a*sec(d*x+c))^(1/2)+8/315*a*(16*A 
+21*C)*sin(d*x+c)/d/sec(d*x+c)^(1/2)/(a+a*sec(d*x+c))^(1/2)+16/315*a*(16*A 
+21*C)*sin(d*x+c)*sec(d*x+c)^(1/2)/d/(a+a*sec(d*x+c))^(1/2)+2/9*A*sin(d*x+ 
c)*(a+a*sec(d*x+c))^(1/2)/d/sec(d*x+c)^(7/2)
 
3.3.57.2 Mathematica [A] (verified)

Time = 0.97 (sec) , antiderivative size = 100, normalized size of antiderivative = 0.47 \[ \int \frac {\sqrt {a+a \sec (c+d x)} \left (A+C \sec ^2(c+d x)\right )}{\sec ^{\frac {9}{2}}(c+d x)} \, dx=\frac {2 a \left (35 A+40 A \sec (c+d x)+(48 A+63 C) \sec ^2(c+d x)+(64 A+84 C) \sec ^3(c+d x)+8 (16 A+21 C) \sec ^4(c+d x)\right ) \sin (c+d x)}{315 d \sec ^{\frac {7}{2}}(c+d x) \sqrt {a (1+\sec (c+d x))}} \]

input
Integrate[(Sqrt[a + a*Sec[c + d*x]]*(A + C*Sec[c + d*x]^2))/Sec[c + d*x]^( 
9/2),x]
 
output
(2*a*(35*A + 40*A*Sec[c + d*x] + (48*A + 63*C)*Sec[c + d*x]^2 + (64*A + 84 
*C)*Sec[c + d*x]^3 + 8*(16*A + 21*C)*Sec[c + d*x]^4)*Sin[c + d*x])/(315*d* 
Sec[c + d*x]^(7/2)*Sqrt[a*(1 + Sec[c + d*x])])
 
3.3.57.3 Rubi [A] (verified)

Time = 1.08 (sec) , antiderivative size = 220, normalized size of antiderivative = 1.03, number of steps used = 11, number of rules used = 11, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.297, Rules used = {3042, 4575, 27, 3042, 4503, 3042, 4292, 3042, 4292, 3042, 4291}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {\sqrt {a \sec (c+d x)+a} \left (A+C \sec ^2(c+d x)\right )}{\sec ^{\frac {9}{2}}(c+d x)} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {\sqrt {a \csc \left (c+d x+\frac {\pi }{2}\right )+a} \left (A+C \csc \left (c+d x+\frac {\pi }{2}\right )^2\right )}{\csc \left (c+d x+\frac {\pi }{2}\right )^{9/2}}dx\)

\(\Big \downarrow \) 4575

\(\displaystyle \frac {2 \int \frac {\sqrt {\sec (c+d x) a+a} (a A+3 a (2 A+3 C) \sec (c+d x))}{2 \sec ^{\frac {7}{2}}(c+d x)}dx}{9 a}+\frac {2 A \sin (c+d x) \sqrt {a \sec (c+d x)+a}}{9 d \sec ^{\frac {7}{2}}(c+d x)}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {\int \frac {\sqrt {\sec (c+d x) a+a} (a A+3 a (2 A+3 C) \sec (c+d x))}{\sec ^{\frac {7}{2}}(c+d x)}dx}{9 a}+\frac {2 A \sin (c+d x) \sqrt {a \sec (c+d x)+a}}{9 d \sec ^{\frac {7}{2}}(c+d x)}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\int \frac {\sqrt {\csc \left (c+d x+\frac {\pi }{2}\right ) a+a} \left (a A+3 a (2 A+3 C) \csc \left (c+d x+\frac {\pi }{2}\right )\right )}{\csc \left (c+d x+\frac {\pi }{2}\right )^{7/2}}dx}{9 a}+\frac {2 A \sin (c+d x) \sqrt {a \sec (c+d x)+a}}{9 d \sec ^{\frac {7}{2}}(c+d x)}\)

\(\Big \downarrow \) 4503

\(\displaystyle \frac {\frac {3}{7} a (16 A+21 C) \int \frac {\sqrt {\sec (c+d x) a+a}}{\sec ^{\frac {5}{2}}(c+d x)}dx+\frac {2 a^2 A \sin (c+d x)}{7 d \sec ^{\frac {5}{2}}(c+d x) \sqrt {a \sec (c+d x)+a}}}{9 a}+\frac {2 A \sin (c+d x) \sqrt {a \sec (c+d x)+a}}{9 d \sec ^{\frac {7}{2}}(c+d x)}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\frac {3}{7} a (16 A+21 C) \int \frac {\sqrt {\csc \left (c+d x+\frac {\pi }{2}\right ) a+a}}{\csc \left (c+d x+\frac {\pi }{2}\right )^{5/2}}dx+\frac {2 a^2 A \sin (c+d x)}{7 d \sec ^{\frac {5}{2}}(c+d x) \sqrt {a \sec (c+d x)+a}}}{9 a}+\frac {2 A \sin (c+d x) \sqrt {a \sec (c+d x)+a}}{9 d \sec ^{\frac {7}{2}}(c+d x)}\)

\(\Big \downarrow \) 4292

\(\displaystyle \frac {\frac {3}{7} a (16 A+21 C) \left (\frac {4}{5} \int \frac {\sqrt {\sec (c+d x) a+a}}{\sec ^{\frac {3}{2}}(c+d x)}dx+\frac {2 a \sin (c+d x)}{5 d \sec ^{\frac {3}{2}}(c+d x) \sqrt {a \sec (c+d x)+a}}\right )+\frac {2 a^2 A \sin (c+d x)}{7 d \sec ^{\frac {5}{2}}(c+d x) \sqrt {a \sec (c+d x)+a}}}{9 a}+\frac {2 A \sin (c+d x) \sqrt {a \sec (c+d x)+a}}{9 d \sec ^{\frac {7}{2}}(c+d x)}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\frac {3}{7} a (16 A+21 C) \left (\frac {4}{5} \int \frac {\sqrt {\csc \left (c+d x+\frac {\pi }{2}\right ) a+a}}{\csc \left (c+d x+\frac {\pi }{2}\right )^{3/2}}dx+\frac {2 a \sin (c+d x)}{5 d \sec ^{\frac {3}{2}}(c+d x) \sqrt {a \sec (c+d x)+a}}\right )+\frac {2 a^2 A \sin (c+d x)}{7 d \sec ^{\frac {5}{2}}(c+d x) \sqrt {a \sec (c+d x)+a}}}{9 a}+\frac {2 A \sin (c+d x) \sqrt {a \sec (c+d x)+a}}{9 d \sec ^{\frac {7}{2}}(c+d x)}\)

\(\Big \downarrow \) 4292

\(\displaystyle \frac {\frac {3}{7} a (16 A+21 C) \left (\frac {4}{5} \left (\frac {2}{3} \int \frac {\sqrt {\sec (c+d x) a+a}}{\sqrt {\sec (c+d x)}}dx+\frac {2 a \sin (c+d x)}{3 d \sqrt {\sec (c+d x)} \sqrt {a \sec (c+d x)+a}}\right )+\frac {2 a \sin (c+d x)}{5 d \sec ^{\frac {3}{2}}(c+d x) \sqrt {a \sec (c+d x)+a}}\right )+\frac {2 a^2 A \sin (c+d x)}{7 d \sec ^{\frac {5}{2}}(c+d x) \sqrt {a \sec (c+d x)+a}}}{9 a}+\frac {2 A \sin (c+d x) \sqrt {a \sec (c+d x)+a}}{9 d \sec ^{\frac {7}{2}}(c+d x)}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\frac {3}{7} a (16 A+21 C) \left (\frac {4}{5} \left (\frac {2}{3} \int \frac {\sqrt {\csc \left (c+d x+\frac {\pi }{2}\right ) a+a}}{\sqrt {\csc \left (c+d x+\frac {\pi }{2}\right )}}dx+\frac {2 a \sin (c+d x)}{3 d \sqrt {\sec (c+d x)} \sqrt {a \sec (c+d x)+a}}\right )+\frac {2 a \sin (c+d x)}{5 d \sec ^{\frac {3}{2}}(c+d x) \sqrt {a \sec (c+d x)+a}}\right )+\frac {2 a^2 A \sin (c+d x)}{7 d \sec ^{\frac {5}{2}}(c+d x) \sqrt {a \sec (c+d x)+a}}}{9 a}+\frac {2 A \sin (c+d x) \sqrt {a \sec (c+d x)+a}}{9 d \sec ^{\frac {7}{2}}(c+d x)}\)

\(\Big \downarrow \) 4291

\(\displaystyle \frac {\frac {2 a^2 A \sin (c+d x)}{7 d \sec ^{\frac {5}{2}}(c+d x) \sqrt {a \sec (c+d x)+a}}+\frac {3}{7} a (16 A+21 C) \left (\frac {2 a \sin (c+d x)}{5 d \sec ^{\frac {3}{2}}(c+d x) \sqrt {a \sec (c+d x)+a}}+\frac {4}{5} \left (\frac {4 a \sin (c+d x) \sqrt {\sec (c+d x)}}{3 d \sqrt {a \sec (c+d x)+a}}+\frac {2 a \sin (c+d x)}{3 d \sqrt {\sec (c+d x)} \sqrt {a \sec (c+d x)+a}}\right )\right )}{9 a}+\frac {2 A \sin (c+d x) \sqrt {a \sec (c+d x)+a}}{9 d \sec ^{\frac {7}{2}}(c+d x)}\)

input
Int[(Sqrt[a + a*Sec[c + d*x]]*(A + C*Sec[c + d*x]^2))/Sec[c + d*x]^(9/2),x 
]
 
output
(2*A*Sqrt[a + a*Sec[c + d*x]]*Sin[c + d*x])/(9*d*Sec[c + d*x]^(7/2)) + ((2 
*a^2*A*Sin[c + d*x])/(7*d*Sec[c + d*x]^(5/2)*Sqrt[a + a*Sec[c + d*x]]) + ( 
3*a*(16*A + 21*C)*((2*a*Sin[c + d*x])/(5*d*Sec[c + d*x]^(3/2)*Sqrt[a + a*S 
ec[c + d*x]]) + (4*((2*a*Sin[c + d*x])/(3*d*Sqrt[Sec[c + d*x]]*Sqrt[a + a* 
Sec[c + d*x]]) + (4*a*Sqrt[Sec[c + d*x]]*Sin[c + d*x])/(3*d*Sqrt[a + a*Sec 
[c + d*x]])))/5))/7)/(9*a)
 

3.3.57.3.1 Defintions of rubi rules used

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 4291
Int[Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)]/Sqrt[csc[(e_.) + (f_.)*(x_)] 
*(d_.)], x_Symbol] :> Simp[-2*a*(Cot[e + f*x]/(f*Sqrt[a + b*Csc[e + f*x]]*S 
qrt[d*Csc[e + f*x]])), x] /; FreeQ[{a, b, d, e, f}, x] && EqQ[a^2 - b^2, 0]
 

rule 4292
Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_)*Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) 
 + (a_)], x_Symbol] :> Simp[a*Cot[e + f*x]*((d*Csc[e + f*x])^n/(f*n*Sqrt[a 
+ b*Csc[e + f*x]])), x] + Simp[a*((2*n + 1)/(2*b*d*n))   Int[Sqrt[a + b*Csc 
[e + f*x]]*(d*Csc[e + f*x])^(n + 1), x], x] /; FreeQ[{a, b, d, e, f}, x] && 
 EqQ[a^2 - b^2, 0] && LtQ[n, -2^(-1)] && IntegerQ[2*n]
 

rule 4503
Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_)*Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) 
 + (a_)]*(csc[(e_.) + (f_.)*(x_)]*(B_.) + (A_)), x_Symbol] :> Simp[A*b^2*Co 
t[e + f*x]*((d*Csc[e + f*x])^n/(a*f*n*Sqrt[a + b*Csc[e + f*x]])), x] + Simp 
[(A*b*(2*n + 1) + 2*a*B*n)/(2*a*d*n)   Int[Sqrt[a + b*Csc[e + f*x]]*(d*Csc[ 
e + f*x])^(n + 1), x], x] /; FreeQ[{a, b, d, e, f, A, B}, x] && NeQ[A*b - a 
*B, 0] && EqQ[a^2 - b^2, 0] && NeQ[A*b*(2*n + 1) + 2*a*B*n, 0] && LtQ[n, 0]
 

rule 4575
Int[((A_.) + csc[(e_.) + (f_.)*(x_)]^2*(C_.))*(csc[(e_.) + (f_.)*(x_)]*(d_. 
))^(n_)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_), x_Symbol] :> Simp[A*Co 
t[e + f*x]*(a + b*Csc[e + f*x])^m*((d*Csc[e + f*x])^n/(f*n)), x] - Simp[1/( 
b*d*n)   Int[(a + b*Csc[e + f*x])^m*(d*Csc[e + f*x])^(n + 1)*Simp[a*A*m - b 
*(A*(m + n + 1) + C*n)*Csc[e + f*x], x], x], x] /; FreeQ[{a, b, d, e, f, A, 
 C, m}, x] && EqQ[a^2 - b^2, 0] &&  !LtQ[m, -2^(-1)] && (LtQ[n, -2^(-1)] || 
 EqQ[m + n + 1, 0])
 
3.3.57.4 Maple [A] (verified)

Time = 0.91 (sec) , antiderivative size = 111, normalized size of antiderivative = 0.52

method result size
default \(\frac {2 \left (35 A \cos \left (d x +c \right )^{4}+40 A \cos \left (d x +c \right )^{3}+48 A \cos \left (d x +c \right )^{2}+63 C \cos \left (d x +c \right )^{2}+64 A \cos \left (d x +c \right )+84 C \cos \left (d x +c \right )+128 A +168 C \right ) \sqrt {a \left (1+\sec \left (d x +c \right )\right )}\, \tan \left (d x +c \right )}{315 d \left (\cos \left (d x +c \right )+1\right ) \sec \left (d x +c \right )^{\frac {3}{2}}}\) \(111\)
parts \(\frac {2 A \left (35 \cos \left (d x +c \right )^{4}+40 \cos \left (d x +c \right )^{3}+48 \cos \left (d x +c \right )^{2}+64 \cos \left (d x +c \right )+128\right ) \sqrt {a \left (1+\sec \left (d x +c \right )\right )}\, \tan \left (d x +c \right )}{315 d \left (\cos \left (d x +c \right )+1\right ) \sec \left (d x +c \right )^{\frac {3}{2}}}+\frac {2 C \sqrt {a \left (1+\sec \left (d x +c \right )\right )}\, \left (3 \sin \left (d x +c \right )+4 \tan \left (d x +c \right )+8 \sec \left (d x +c \right ) \tan \left (d x +c \right )\right )}{15 d \left (\cos \left (d x +c \right )+1\right ) \sec \left (d x +c \right )^{\frac {5}{2}}}\) \(151\)

input
int((A+C*sec(d*x+c)^2)*(a+a*sec(d*x+c))^(1/2)/sec(d*x+c)^(9/2),x,method=_R 
ETURNVERBOSE)
 
output
2/315/d*(35*A*cos(d*x+c)^4+40*A*cos(d*x+c)^3+48*A*cos(d*x+c)^2+63*C*cos(d* 
x+c)^2+64*A*cos(d*x+c)+84*C*cos(d*x+c)+128*A+168*C)*(a*(1+sec(d*x+c)))^(1/ 
2)/(cos(d*x+c)+1)/sec(d*x+c)^(3/2)*tan(d*x+c)
 
3.3.57.5 Fricas [A] (verification not implemented)

Time = 0.27 (sec) , antiderivative size = 121, normalized size of antiderivative = 0.57 \[ \int \frac {\sqrt {a+a \sec (c+d x)} \left (A+C \sec ^2(c+d x)\right )}{\sec ^{\frac {9}{2}}(c+d x)} \, dx=\frac {2 \, {\left (35 \, A \cos \left (d x + c\right )^{5} + 40 \, A \cos \left (d x + c\right )^{4} + 3 \, {\left (16 \, A + 21 \, C\right )} \cos \left (d x + c\right )^{3} + 4 \, {\left (16 \, A + 21 \, C\right )} \cos \left (d x + c\right )^{2} + 8 \, {\left (16 \, A + 21 \, C\right )} \cos \left (d x + c\right )\right )} \sqrt {\frac {a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \sin \left (d x + c\right )}{315 \, {\left (d \cos \left (d x + c\right ) + d\right )} \sqrt {\cos \left (d x + c\right )}} \]

input
integrate((A+C*sec(d*x+c)^2)*(a+a*sec(d*x+c))^(1/2)/sec(d*x+c)^(9/2),x, al 
gorithm="fricas")
 
output
2/315*(35*A*cos(d*x + c)^5 + 40*A*cos(d*x + c)^4 + 3*(16*A + 21*C)*cos(d*x 
 + c)^3 + 4*(16*A + 21*C)*cos(d*x + c)^2 + 8*(16*A + 21*C)*cos(d*x + c))*s 
qrt((a*cos(d*x + c) + a)/cos(d*x + c))*sin(d*x + c)/((d*cos(d*x + c) + d)* 
sqrt(cos(d*x + c)))
 
3.3.57.6 Sympy [F(-1)]

Timed out. \[ \int \frac {\sqrt {a+a \sec (c+d x)} \left (A+C \sec ^2(c+d x)\right )}{\sec ^{\frac {9}{2}}(c+d x)} \, dx=\text {Timed out} \]

input
integrate((A+C*sec(d*x+c)**2)*(a+a*sec(d*x+c))**(1/2)/sec(d*x+c)**(9/2),x)
 
output
Timed out
 
3.3.57.7 Maxima [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 587 vs. \(2 (183) = 366\).

Time = 0.50 (sec) , antiderivative size = 587, normalized size of antiderivative = 2.76 \[ \int \frac {\sqrt {a+a \sec (c+d x)} \left (A+C \sec ^2(c+d x)\right )}{\sec ^{\frac {9}{2}}(c+d x)} \, dx=\text {Too large to display} \]

input
integrate((A+C*sec(d*x+c)^2)*(a+a*sec(d*x+c))^(1/2)/sec(d*x+c)^(9/2),x, al 
gorithm="maxima")
 
output
1/5040*(sqrt(2)*(1890*cos(8/9*arctan2(sin(9/2*d*x + 9/2*c), cos(9/2*d*x + 
9/2*c)))*sin(9/2*d*x + 9/2*c) + 420*cos(2/3*arctan2(sin(9/2*d*x + 9/2*c), 
cos(9/2*d*x + 9/2*c)))*sin(9/2*d*x + 9/2*c) + 252*cos(4/9*arctan2(sin(9/2* 
d*x + 9/2*c), cos(9/2*d*x + 9/2*c)))*sin(9/2*d*x + 9/2*c) + 45*cos(2/9*arc 
tan2(sin(9/2*d*x + 9/2*c), cos(9/2*d*x + 9/2*c)))*sin(9/2*d*x + 9/2*c) - 1 
890*cos(9/2*d*x + 9/2*c)*sin(8/9*arctan2(sin(9/2*d*x + 9/2*c), cos(9/2*d*x 
 + 9/2*c))) - 420*cos(9/2*d*x + 9/2*c)*sin(2/3*arctan2(sin(9/2*d*x + 9/2*c 
), cos(9/2*d*x + 9/2*c))) - 252*cos(9/2*d*x + 9/2*c)*sin(4/9*arctan2(sin(9 
/2*d*x + 9/2*c), cos(9/2*d*x + 9/2*c))) - 45*cos(9/2*d*x + 9/2*c)*sin(2/9* 
arctan2(sin(9/2*d*x + 9/2*c), cos(9/2*d*x + 9/2*c))) + 70*sin(9/2*d*x + 9/ 
2*c) + 45*sin(7/9*arctan2(sin(9/2*d*x + 9/2*c), cos(9/2*d*x + 9/2*c))) + 2 
52*sin(5/9*arctan2(sin(9/2*d*x + 9/2*c), cos(9/2*d*x + 9/2*c))) + 420*sin( 
1/3*arctan2(sin(9/2*d*x + 9/2*c), cos(9/2*d*x + 9/2*c))) + 1890*sin(1/9*ar 
ctan2(sin(9/2*d*x + 9/2*c), cos(9/2*d*x + 9/2*c))))*A*sqrt(a) + 84*sqrt(2) 
*(30*cos(4/5*arctan2(sin(5/2*d*x + 5/2*c), cos(5/2*d*x + 5/2*c)))*sin(5/2* 
d*x + 5/2*c) + 5*cos(2/5*arctan2(sin(5/2*d*x + 5/2*c), cos(5/2*d*x + 5/2*c 
)))*sin(5/2*d*x + 5/2*c) - 30*cos(5/2*d*x + 5/2*c)*sin(4/5*arctan2(sin(5/2 
*d*x + 5/2*c), cos(5/2*d*x + 5/2*c))) - 5*cos(5/2*d*x + 5/2*c)*sin(2/5*arc 
tan2(sin(5/2*d*x + 5/2*c), cos(5/2*d*x + 5/2*c))) + 6*sin(5/2*d*x + 5/2*c) 
 + 5*sin(3/5*arctan2(sin(5/2*d*x + 5/2*c), cos(5/2*d*x + 5/2*c))) + 30*...
 
3.3.57.8 Giac [F]

\[ \int \frac {\sqrt {a+a \sec (c+d x)} \left (A+C \sec ^2(c+d x)\right )}{\sec ^{\frac {9}{2}}(c+d x)} \, dx=\int { \frac {{\left (C \sec \left (d x + c\right )^{2} + A\right )} \sqrt {a \sec \left (d x + c\right ) + a}}{\sec \left (d x + c\right )^{\frac {9}{2}}} \,d x } \]

input
integrate((A+C*sec(d*x+c)^2)*(a+a*sec(d*x+c))^(1/2)/sec(d*x+c)^(9/2),x, al 
gorithm="giac")
 
output
sage0*x
 
3.3.57.9 Mupad [B] (verification not implemented)

Time = 18.67 (sec) , antiderivative size = 142, normalized size of antiderivative = 0.67 \[ \int \frac {\sqrt {a+a \sec (c+d x)} \left (A+C \sec ^2(c+d x)\right )}{\sec ^{\frac {9}{2}}(c+d x)} \, dx=\frac {\cos \left (c+d\,x\right )\,\sqrt {\frac {1}{\cos \left (c+d\,x\right )}}\,\sqrt {\frac {a\,\left (\cos \left (c+d\,x\right )+1\right )}{\cos \left (c+d\,x\right )}}\,\left (2310\,A\,\sin \left (c+d\,x\right )+2940\,C\,\sin \left (c+d\,x\right )+672\,A\,\sin \left (2\,c+2\,d\,x\right )+297\,A\,\sin \left (3\,c+3\,d\,x\right )+80\,A\,\sin \left (4\,c+4\,d\,x\right )+35\,A\,\sin \left (5\,c+5\,d\,x\right )+672\,C\,\sin \left (2\,c+2\,d\,x\right )+252\,C\,\sin \left (3\,c+3\,d\,x\right )\right )}{2520\,d\,\left (\cos \left (c+d\,x\right )+1\right )} \]

input
int(((A + C/cos(c + d*x)^2)*(a + a/cos(c + d*x))^(1/2))/(1/cos(c + d*x))^( 
9/2),x)
 
output
(cos(c + d*x)*(1/cos(c + d*x))^(1/2)*((a*(cos(c + d*x) + 1))/cos(c + d*x)) 
^(1/2)*(2310*A*sin(c + d*x) + 2940*C*sin(c + d*x) + 672*A*sin(2*c + 2*d*x) 
 + 297*A*sin(3*c + 3*d*x) + 80*A*sin(4*c + 4*d*x) + 35*A*sin(5*c + 5*d*x) 
+ 672*C*sin(2*c + 2*d*x) + 252*C*sin(3*c + 3*d*x)))/(2520*d*(cos(c + d*x) 
+ 1))